On the Integrability of a Class of Monge-Ampère Equations

نویسنده

  • J. C. Brunelli
چکیده

We give the Lax representations for for the elliptic, hyperbolic and homogeneous second order Monge-Ampère equations. The connection between these equations and the equations of hydrodynamical type give us a scalar dispersionless Lax representation. A matrix dispersive Lax representation follows from the correspondence between sigma models, a two parameter equation for minimal surfaces and Monge-Ampère equations. Local as well nonlocal conserved densities are obtained. * [email protected] ** [email protected] *** [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Harnack Inequality for the Linearized Monge-ampère Equations and Applications

In this paper, we obtain boundary Harnack estimates and comparison theorem for nonnegative solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are boundary versions of Caffarelli and Gutiérrez’s interior Harnack inequality for the linearized Monge-Ampère equations. As an application, we obtain sharp upp...

متن کامل

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

The Monge-ampère Equation and Its Link to Optimal Transportation

We survey old and new regularity theory for the Monge-Ampère equation, show its connection to optimal transportation, and describe the regularity properties of a general class of Monge-Ampère type equations arising in that context.

متن کامل

Regularity for Solutions of the Monge-ampère Equation

In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, is W 2,1 loc . This is obtained by showing higher integrability a-priori estimates for Du, namely Du ∈ L log L for any k ∈ N.

متن کامل

Boundary Regularity for Solutions to the Linearized Monge-ampère Equations

We obtain boundary Hölder gradient estimates and regularity for solutions to the linearized Monge-Ampère equations under natural assumptions on the domain, Monge-Ampère measures and boundary data. Our results are affine invariant analogues of the boundary Hölder gradient estimates of Krylov.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999